Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 7551, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160901

RESUMO

Plants require copper for normal growth and development and have evolved an efficient system for copper management based on transport proteins such as P1B-ATPases, also known as heavy metal ATPases (HMAs). Here, we report HMAs in eleven different Poaceae species, including wheat. Furthermore, the possible role of wheat HMAs in copper stress was investigated. BlastP searches identified 27 HMAs in wheat, and phylogenetic analysis based on the Maximum Likelihood method demonstrated a separation into four distinct clades. Conserved motif analysis, domain identification, gene structure, and transmembrane helices number were also identified for wheat HMAs using computational tools. Wheat seedlings grown hydroponically were subjected to elevated copper and demonstrated toxicity symptoms with effects on fresh weight and changes in expression of selected HMAs TaHMA7, TaHMA8, and TaHMA9 were upregulated in response to elevated copper, suggesting a role in wheat copper homeostasis. Further investigations on these heavy metal pumps can provide insight into strategies for enhancing crop heavy metal tolerance in the face of heavy metal pollution.


Assuntos
Cobre , Metais Pesados , Cobre/toxicidade , Triticum/genética , Poaceae , Filogenia , Metais Pesados/toxicidade , Adenosina Trifosfatases
2.
Front Plant Sci ; 14: 1139136, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950354

RESUMO

Cadmium (Cd) contamination of soils is an environmental concern, as cadmium harms food crops and can therefore impact human health. The use of combinations of biochar (seeded with Rhizobium leguminosarum) and Vigna radiata (as an intercrop) has the potential to reduce the mobilization of Cd from soil via mustard plants (Brassica juncea). Mustard plants are grown as a food and oil production crop that is consumed worldwide. However, this plant has the property of hyperaccumulation; thus, it bioaccumulates Cd in its tissues, which in turn, if eaten, can become part of the human food chain. Hence, reducing Cd bioaccumulation in mustard plants is crucial to making these plants a reliable and safe source of food for consumption. To improve soil sorption capacity and immobilization efficiency, biochar (in the form of wheat husk) was mixed with R. leguminosarum and intercropped (using V. radiata) with mustard plants for further investigation. Sampling was performed at an early growth stage (i.e., at 30 days) and at maturity (i.e., at 60 days) to determine the impact of Cd on a plant's morphophysiological attributes. Data were analyzed in two ways: first by analysis of variance (ANOVA) and then by the post hoc Tukey's honestly significant difference (HSD) test. The statistical analysis concluded that combinations effectively improved plant traits by 65%-90% in the early growth stage and by 70%-90% in the maturity stage. The T6 treatment combination [i.e., biochar + R. leguminosarum + V. radiata (BC + RL + VR)] provided the most effective results in terms of growth, biomass, pod yield, and pigmentation content. In addition, this combination reduced the translocation of Cd in mustard plants by 70%-95%. The combination of BC + RL + VR effectively reduced Cd contamination of mustard tissue and provided a suitable growing environment for the plants. A post-harvesting soil analysis using X-ray diffraction (XRD) found that Cd was undetectable in soil. This provides clear confirmation that these approaches can lead to Cd soil remediation. Moreover, this study provided insight into the responses of different morphophysiological attributes of mustard plants to Cd stress and could aid in developing Cd stress tolerance in mustard plants.

3.
Front Plant Sci ; 13: 1031679, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507398

RESUMO

Tomato is a drought-sensitive crop which has high susceptibility to adverse climatic changes. Dehydration-responsive element-binding (DREB) are significant plant transcription factors that have a vital role in regulating plant abiotic stress tolerance by networking with DRE/CRT cis-regulatory elements in response to stresses. In this study, bioinformatics analysis was performed to conduct the genome-wide identification and characterization of DREB genes and promoter elements in Solanum lycopersicum. In genome-wide coverage, 58 SlDREB genes were discovered on 12 chromosomes that justified the criteria of the presence of AP2 domain as conserved motifs. Intron-exon organization and motif analysis showed consistency with phylogenetic analysis and confirmed the absence of the A3 class, thus dividing the SlDREB genes into five categories. Gene expansion was observed through tandem duplication and segmental duplication gene events in SlDREB genes. Ka/Ks values were calculated in ortholog pairs that indicated divergence time and occurrence of purification selection during the evolutionary period. Synteny analysis demonstrated that 32 out of 58 and 47 out of 58 SlDREB genes were orthologs to Arabidopsis and Solanum tuberosum, respectively. Subcellular localization predicted that SlDREB genes were present in the nucleus and performed primary functions in DNA binding to regulate the transcriptional processes according to gene ontology. Cis-acting regulatory element analysis revealed the presence of 103 motifs in 2.5-kbp upstream promoter sequences of 58 SlDREB genes. Five representative SlDREB proteins were selected from the resultant DREB subgroups for 3D protein modeling through the Phyre2 server. All models confirmed about 90% residues in the favorable region through Ramachandran plot analysis. Moreover, active catalytic sites and occurrence in disorder regions indicated the structural and functional flexibility of SlDREB proteins. Protein association networks through STRING software suggested the potential interactors that belong to different gene families and are involved in regulating similar functional and biological processes. Transcriptome data analysis has revealed that the SlDREB gene family is engaged in defense response against drought and heat stress conditions in tomato. Overall, this comprehensive research reveals the identification and characterization of SlDREB genes that provide potential knowledge for improving abiotic stress tolerance in tomato.

4.
PLoS One ; 17(9): e0273768, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36084097

RESUMO

Nitrogen is an important plant nutrient that has a significant role in crop yield. Hence, to fulfill the needs of sustainable agriculture, it is necessary to improve biological nitrogen fixation in leguminous crops. Nod inducing gene families plays a crucial role in the interaction between rhizobia and legumes, leading to biological nitrogen fixation. However, nod inducing genes identification and characterization has not yet been performed in Arachis hypogaea. In this study, identification and genome-wide analysis of nod inducing genes are performed so that to explore their potential functions in the Arachis hypogaea for the first time. Nod genes were comprehensively analyzed by phylogenetic clustering analysis, gene structure determination, detection of conserved motifs, subcellular localization, conserved motifs, cis-acting elements and promoter region analysis. This study identified 42 Nod inducing genes in Arachis hypogaea, their sequences were submitted to NCBI and accession numbers were obtained. Potential involvement of these genes in biological nitrogen fixation has been unraveled, such as, phylogenetic analysis revealed that nod inducing genes evolved independently in Arachis hypogaea, the amino acid structures exhibited 20 highly conserved motifs, the proteins are present at different locations in cells and the gene structures revealed that all the genes are full-length genes with upstream intronic regions. Further, the promoter analysis determined a large number of cis-regulatory elements involved in nodulation. Moreover, this study not only provides identification and characterization of genes underlying developmental and functional stages of nodulation and biological nitrogen fixation but also lays the foundation for further revelation of nod inducing gene family. Besides, identification and structural analysis of these genes in Arachis hypogaea may provide a theoretical basis for the study of evolutionary relationships in future analysis.


Assuntos
Fabaceae , Rhizobium , Arachis/genética , Arachis/metabolismo , Fixação de Nitrogênio/genética , Filogenia
5.
Plants (Basel) ; 11(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35807728

RESUMO

Stilbene synthase is an important enzyme of the phenylpropanoid pathway, regulating the production of several biologically active stilbenoids. These compounds have antioxidant, anti-inflammatory, and anti-cancer properties. However, the detailed characterization of stilbene synthase genes in Arachis hypogaea has not yet been performed. In this study, the comprehensive characterization of stilbene synthase genes in A. hypogaea was conducted, commencing with identification, phylogenetic analysis, and study of their expression in response to exogenous hormonal treatment. We identified and isolated five AhSTSs genes and recorded their expression pattern in peanut (BARD-479) in response to methyl jasmonate (MeJA) and salicylic acid (SA) treatment. The presence of Chal_sti_synt, ACP_syn_III, and FAE1_CUT1_rppA domains in all AhSTSs indicated their role in the biosynthesis of stilbene and lipid metabolism. Cis-regulatory element analysis indicated their role in light responsiveness, defense responses, regulation of seed development, plant growth, and development. Despite close structural and functional similarities, expression and correlational analysis suggested that these genes may have a specific role in peanut, as individual AhSTS exhibited differential expression upon hormonal treatment in a genotype dependent manner. Further studies on functional characterization involving the transcriptional regulation of AhSTSs can clearly explain the differential expression of stilbene synthase genes to hormonal treatment.

6.
PLoS One ; 16(12): e0261215, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34914734

RESUMO

Dehydration Responsive Element Binding (DREB) regulates the expression of numerous stress-responsive genes, and hence plays a pivotal role in abiotic stress responses and tolerance in plants. The study aimed to develop a complete overview of the cis-acting regulatory elements (CAREs) present in S. tuberosum DREB gene promoters. A total of one hundred and four (104) cis-regulatory elements (CREs) were identified from 2.5kbp upstream of the start codon (ATG). The in-silico promoter analysis revealed variable sets of cis-elements and functional diversity with the predominance of light-responsive (30%), development-related (20%), abiotic stress-responsive (14%), and hormone-responsive (12%) elements in StDREBs. Among them, two light-responsive elements (Box-4 and G-box) were predicted in 64 and 61 StDREB genes, respectively. Two development-related motifs (AAGAA-motif and as-1) were abundant in StDREB gene promoters. Most of the DREB genes contained one or more Myeloblastosis (MYB) and Myelocytometosis (MYC) elements associated with abiotic stress responses. Hormone-responsive element i.e. ABRE was found in 59 out of 66 StDREB genes, which implied their role in dehydration and salinity stress. Moreover, six proteins were chosen corresponding to A1-A6 StDREB subgroups for secondary structure analysis and three-dimensional protein modeling followed by model validation through PROCHECK server by Ramachandran Plot. The predicted models demonstrated >90% of the residues in the favorable region, which further ensured their reliability. The present study also anticipated pocket binding sites and disordered regions (DRs) to gain insights into the structural flexibility and functional annotation of StDREB proteins. The protein association network determined the interaction of six selected StDREB proteins with potato proteins encoded by other gene families such as MYB and NAC, suggesting their similar functional roles in biological and molecular pathways. Overall, our results provide fundamental information for future functional analysis to understand the precise molecular mechanisms of the DREB gene family in S. tuberosum.


Assuntos
Regiões Promotoras Genéticas/genética , Solanum tuberosum/genética , Fatores de Transcrição/genética , Arabidopsis/genética , Desidratação/genética , Secas , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Estudo de Associação Genômica Ampla/métodos , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas/genética , Estresse Salino/genética , Homologia de Sequência do Ácido Nucleico , Solanum tuberosum/crescimento & desenvolvimento , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo
7.
PLoS One ; 16(11): e0259404, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34847173

RESUMO

Transcription factors are regulatory proteins known to modulate gene expression. These are the critical component of signaling pathways and help in mitigating various developmental and stress responses. Among them, bZIP, BBR, and BZR transcription factor families are well known to play a crucial role in regulating growth, development, and defense responses. However, limited data is available on these transcription factors in Triticum aestivum. In this study, bZIP, BBR, and BZR sequences from Brachypodium distachyon, Oryza sativa, Oryza barthii, Oryza brachyantha, T. aestivum, Triticum urartu, Sorghum bicolor, Zea mays were retrieved, and dendrograms were constructed to analyze the evolutionary relatedness among them. The sequences clustered into one group indicated a degree of evolutionary correlation highlighting the common lineage of cereal grains. This analysis also exhibited that these genes were highly conserved among studied monocots emphasizing their common ancestry. Furthermore, these transcription factor genes were evaluated for envisaging conserved motifs, gene structure, and subcellular localization in T. aestivum. This comprehensive computational analysis has provided an insight into transcription factor evolution that can also be useful in developing approaches for future functional characterization of these genes in T. aestivum. Furthermore, the data generated can be beneficial in future for genetic manipulation of economically important plants.


Assuntos
Genoma de Planta , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Triticum/genética , Sequência de Aminoácidos , Fatores de Transcrição de Zíper de Leucina Básica/química , Fatores de Transcrição de Zíper de Leucina Básica/classificação , Fatores de Transcrição de Zíper de Leucina Básica/genética , Brachypodium/genética , Brachypodium/metabolismo , Oryza/genética , Oryza/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Alinhamento de Sequência , Sorghum/genética , Sorghum/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/classificação , Triticum/metabolismo , Zea mays/genética , Zea mays/metabolismo
8.
Front Plant Sci ; 12: 680368, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220900

RESUMO

Drought is one of the hostile environmental stresses that limit the yield production of crop plants by modulating their growth and development. Peanut (Arachis hypogaea) has a wide range of adaptations to arid and semi-arid climates, but its yield is prone to loss due to drought. Other than beneficial fatty acids and micronutrients, peanut harbors various bioactive compounds including flavonoids that hold a prominent position as antioxidants in plants and protect them from oxidative stress. In this study, understanding of the biosynthesis of flavonoids in peanut under water deficit conditions was developed through expression analysis and correlational analysis and determining the accumulation pattern of phenols, flavonols, and anthocyanins. Six peanut varieties (BARD479, BARI2011, BARI2000, GOLDEN, PG1102, and PG1265) having variable responses against drought stress have been selected. Higher water retention and flavonoid accumulation have been observed in BARI2011 but downregulation has been observed in the expression of genes and transcription factors (TFs) which indicated the maintenance of normal homeostasis. ANOVA revealed that the expression of flavonoid genes and TFs is highly dependent upon the genotype of peanut in a spatiotemporal manner. Correlation analysis between expression of flavonoid biosynthetic genes and TFs indicated the role of AhMYB111 and AhMYB7 as an inhibitor for AhF3H and AhFLS, respectively, and AhMYB7, AhTTG1, and AhCSU2 as a positive regulator for the expression of Ah4CL, AhCHS, and AhF3H, respectively. However, AhbHLH and AhGL3 revealed nil-to-little relation with the expression of flavonoid biosynthetic pathway genes. Correlational analysis between the expression of TFs related to the biosynthesis of flavonoids and the accumulation of phenolics, flavonols, and anthocyanins indicated coregulation of flavonoid synthesis by TFs under water deficit conditions in peanut. This study would provide insight into the role of flavonoid biosynthetic pathway in drought response in peanut and would aid to develop drought-tolerant varieties of peanut.

9.
Plant Genome ; 14(3): e20096, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34275212

RESUMO

Characterization of genomic regions underlying adaptation of landraces can reveal a quantitative genetics framework for local wheat (Triticum aestivum L.) adaptability. A collection of 512 wheat landraces from the eastern edge of the Fertile Crescent in Iran and Pakistan were genotyped using genome-wide single nucleotide polymorphism markers generated by genotyping-by-sequencing. The minor allele frequency (MAF) and the heterozygosity (H) of Pakistani wheat landraces (MAF = 0.19, H = 0.008) were slightly higher than the Iranian wheat landraces (MAF = 0.17, H = 0.005), indicating that Pakistani landraces were slightly more genetically diverse. Population structure analysis clearly separated the Pakistani landraces from Iranian landraces, which indicates two separate adaptability trajectories. The large-scale agro-climatic data of seven variables were quite dissimilar between Iran and Pakistan as revealed by the correlation coefficients. Genome-wide association study identified 91 and 58 loci using agroclimatic data, which likely underpin local adaptability of the wheat landraces from Iran and Pakistan, respectively. Selective sweep analysis identified significant hits on chromosomes 4A, 4B, 6B, 7B, 2D, and 6D, which were colocalized with the loci associated with local adaptability and with some known genes related to flowering time and grain size. This study provides insight into the genetic diversity with emphasis on the genetic architecture of loci involved in adaptation to local environments, which has breeding implications.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Irã (Geográfico) , Desequilíbrio de Ligação , Paquistão , Melhoramento Vegetal , Triticum/genética
10.
PeerJ ; 9: e11647, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34221730

RESUMO

BACKGROUND: The dehydration responsive element-binding (DREB) gene family plays a crucial role as transcription regulators and enhances plant tolerance to abiotic stresses. Although the DREB gene family has been identified and characterized in many plants, knowledge about it in Solanum tuberosum (Potato) is limited. RESULTS: In the present study, StDREB gene family was comprehensively analyzed using bioinformatics approaches. We identified 66 StDREB genes through genome wide screening of the Potato genome based on the AP2 domain architecture and amino acid conservation analysis (Valine at position 14th). Phylogenetic analysis divided them into six distinct subgroups (A1-A6). The categorization of StDREB genes into six subgroups was further supported by gene structure and conserved motif analysis. Potato DREB genes were found to be distributed unevenly across 12 chromosomes. Gene duplication proved that StDREB genes experienced tandem and segmental duplication events which led to the expansion of the gene family. The Ka/Ks ratios of the orthologous pairs also demonstrated the StDREB genes were under strong purification selection in the course of evolution. Interspecies synteny analysis revealed 45 and 36 StDREB genes were orthologous to Arabidopsis and Solanum lycopersicum, respectively. Moreover, subcellular localization indicated that StDREB genes were predominantly located within the nucleus and the StDREB family's major function was DNA binding according to gene ontology (GO) annotation. CONCLUSIONS: This study provides a comprehensive and systematic understanding of precise molecular mechanism and functional characterization of StDREB genes in abiotic stress responses and will lead to improvement in Solanum tuberosum.

11.
PeerJ ; 9: e11409, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055482

RESUMO

The CRISPR-Cas9 system has recently evolved as a powerful mutagenic tool for targeted genome editing. The impeccable functioning of the system depends on the optimal design of single guide RNAs (sgRNAs) that mainly involves sgRNA specificity and on-target cleavage efficacy. Several research groups have designed algorithms and models, trained on mammalian genomes, for predicting sgRNAs cleavage efficacy. These models are also implemented in most plant sgRNA design tools due to the lack of on-target cleavage efficacy studies in plants. However, one of the major drawbacks is that almost all of these models are biased for considering only coding regions of the DNA while excluding ineffective regions, which are of immense importance in functional genomics studies especially for plants, thus making prediction less reliable. In the present study, we evaluate the on-target cleavage efficacy of experimentally validated sgRNAs designed against diverse ineffective regions of Arabidopsis thaliana genome using various statistical tests. We show that nucleotide preference in protospacer adjacent motif (PAM) proximal region, GC content in the PAM proximal seed region, intact RAR and 3rd stem loop structures, and free accessibility of nucleotides in seed and tracrRNA regions of sgRNAs are important determinants associated with their high on-target cleavage efficacy. Thus, our study describes the features important for plant sgRNAs high on-target cleavage efficacy against ineffective genomic regions previously shown to give rise to ineffective sgRNAs. Moreover, it suggests the need of developing an elaborative plant-specific sgRNA design model considering the entire genomic landscape including ineffective regions for enabling highly efficient genome editing without wasting time and experimental resources.

12.
Saudi J Biol Sci ; 28(4): 2301-2315, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33911945

RESUMO

Arachis hypogaea (peanut) is a potential source of bioactive compounds including flavonols and proanthocyanidins, which have gained particular interest of metabolic engineering owing to their significance in the growth, development and defense responses in plants. To gain insight of proanthocyanidins and flavonols production in A. hypogaea, Leucoanthocyanidin reductase (AhLAR) and Flavonol synthase (AhFLS) enzymes responsible for their production, have been structurally, transcriptionally and functionally characterized. Structural and functional analysis of putative protein sequence of AhFLS indicated two functional motifs 2OG-FeII_Oxy and DIOX_N, while six functional motifs belonging to the families of NAD-dependent dehydratase, 3, ß hydroxysteroid dehydrogenase and NmrA-like family were observed in case of AhLAR. Promoter sequence analysis unraveled several promoter elements related to the development regulation, environmental stress responses and hormonal signaling. Furthermore, the expression analysis of AhFLS and AhLAR and accumulation pattern analysis of proanthocyanidins and flavonols in three selected cultivars of A. hypogaea under saline environment confirmed their role against salinity in genotype-dependent and stress level-dependent manner. Correlation studies revealed that AhFLS and AhLAR expression is not directly dependent on the antioxidant enzymes activity, biochemical and growth parameters but higher Pearson r value depicted some level of dependency. This detailed study of AhLAR and AhFLS can assist in the metabolic engineering of flavonoid biosynthetic pathway to produce stress tolerant varieties and production of proanthocyanidins and flavonols at an industrial scale.

13.
Front Genet ; 11: 609668, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381153

RESUMO

In plants, F-box proteins (FBPs) constitute one of the largest superfamilies of regulatory proteins. Most F-box proteins are shown to be an integral part of SCF complexes, which carry out the degradation of proteins and regulate diverse important biological processes. Anthers and pollen development have a huge importance in crop breeding. Despite the vast diversity of FBPs in Arabidopsis male reproductive organs, their role in anther and pollen development is not much explored. Moreover, a standard nomenclature for naming FBPs is also lacking. Here, we propose a standard nomenclature for naming the FBPs of Arabidopsis thaliana uniformly and carry out a systematic analysis of sperm cell-specific FBP gene, i.e., 3p.AtFBP113 due to its reported high and preferential expression, for detailed functional annotation. The results revealed that 3p.AtFBP113 is located on the small arm of chromosome and encodes 397 amino acid long soluble, stable, and hydrophilic protein with the possibility of localization in various cellular compartments. The presence of the C-terminal F-box associated domain (FBA) with immunoglobulin-like fold anticipated its role in protein binding. Gene ontology based functional annotation and tissue-specific gene co-expression analysis further strengthened its role in protein binding and ubiquitination. Moreover, various potential post/co-translational modifications were anticipated and the predicted tertiary structure also showed the presence of characteristic domains and fold. Thus, the outcomes of the study will be useful in developing a better understating of the function of 3p.AtFBP113 during the process of pollen development, which will be helpful for targeting the gene for manipulation of male fertility that has immense importance in hybrid breeding.

14.
Genes Genet Syst ; 94(3): 117-122, 2019 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-31231091

RESUMO

The role of cyclin-dependent kinase inhibitor 2A gene (CDKN2A) variants in breast cancer is not well understood, here we investigated their possible effects on breast cancer in Pakistani women attending the NORI Hospital, Islamabad. Direct DNA sequencing of CDKN2A identified an already known polymorphism in the 3' UTR, c.*29G>C (rs11515), in 5.88% patients and two novel variants. One, a deep intronic substitution (c.458-554T>G) in 1.96% patients, is also detected as a compound heterozygous form along with c.*29G>C in 1.96% patients (c.[458-554T>G; *29G>C]). The other is a novel deletion (c.458-82delG) occurring as a compound variant with two other identified variants c.[458-554T>G; 458-82delG; *29G>C] in 1.96% patients. In silico pathogenicity prediction analyses did not predict pathogenic effects on breast cancer for these individual variants. We conclude that variations in CDKN2A are not the major genetic cause of breast cancer in the enrolled Pakistani patients.


Assuntos
Neoplasias da Mama/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Predisposição Genética para Doença , Regiões 3' não Traduzidas/genética , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Inibidor p16 de Quinase Dependente de Ciclina/sangue , Feminino , Humanos , Íntrons/genética , Mutação , Paquistão , Polimorfismo de Nucleotídeo Único/genética
15.
Comput Biol Chem ; 73: 206-212, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29501997

RESUMO

Germins and germin-like proteins from cupin superfamily contribute resistance to heat denaturation, chemical degradation and against plant pathogens, further functions in plant growth and development. In this study, from three different Oryza sativa accessions KS-282 and Pak 7178 and Pak 7865, OsRGLP2 gene promoter region was amplified, sequenced and analyzed. Sequencing data was evaluated via different computational tools. The regulatory elements were predicted by Consite tool and mapping was done. Many transcription factors binding sites were discovered in OsRGLP2 gene promoter; among these factors, HFH-1 having a significant role in germination was picked for further investigation. To study the interaction between HFH-1 and corresponding regulatory factors, HADDOCK Webserver was used. Graphical models for the interactions of HFH-1 and related regulatory elements were studied by graphic molecular system PyMOL. Mapping of cis-acting regulatory elements in OsRGLP2 gene promoter from three rice accessions showed differences in their position and copy number. Important regulatory elements found in OsRGLP2 promoter region were TATA, CAAT Box, ARR1, GATA, AGAAA, CAAT and DNA-binding One Zinc Finger (Dof) factors, few of them contribute to the regulation of plant defensive system, light responses, developmental and growth activities. Furthermore, during DNA interaction studies, it was found that HFH-1 transcription factor participates in hydrogen bonds formation with thymine and adenine bases.


Assuntos
Biologia Computacional , Oryza/genética , Regiões Promotoras Genéticas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Sequência de Bases , Análise de Sequência de DNA
16.
Appl Spectrosc ; 71(5): 1004-1013, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27634888

RESUMO

This study is intended to develop a screening method for female breast cancer (BRC) from whole blood using Raman spectroscopy. A multivariate partial least squares (PLS) regression model is developed which is based upon Raman spectra of BRC-positive and healthy participants. It yields coefficients of regression at the corresponding Raman shifts. These coefficients represent the changes in molecular structures which are associated with the progress of disease. The present study pointed out some specific molecules which differentiated BRC-positive and healthy groups. In the BRC-positive group, a rising trend of calcium oxalate, calcium hydroxyapatite, phosphatidylserine and qunoid ring, and a lowering trend of tryptophan, tyrosine, and proline were observed in PLS-based coefficients of regression. The R-square value of the model was found to be 0.987, which is accepted clinically. The model was tested for the prediction of 50 randomly collected samples at a cutoff value of 0.5 with the gray region defined in the range of 0.4-0.6. Goodness of fit was estimated using accuracy, sensitivity, specificity, receiver operating characteristic (ROC) curve, and area under ROC curve. All of these parameters were found to be very promising.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias da Mama/sangue , Análise Espectral Raman/métodos , Neoplasias da Mama/metabolismo , Feminino , Humanos , Análise dos Mínimos Quadrados , Análise Multivariada , Curva ROC
17.
Funct Integr Genomics ; 16(1): 19-27, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26277722

RESUMO

Controlled transgene expression via a promoter is particularly triggered in response to pathogen infiltration. This is significant for eliciting disease-resistant features in crops through genetic engineering. The germins and germin-like proteins (GLPs) are known to be associated with plant and developmental stages. The 1107-bp Oryza sativa root GLP2 (OsRGLP2) gene promoter fused to a ß-glucuronidase (GUS) reporter gene was transformed into potato plants through an Agrobacterium-mediated transformation. The OsRGLP2 promoter was activated in response to Fusarium solani (Mart.) Sacc. and Alternaria solani Sorauer. Quantitative real-time PCR results revealed 4-5-fold increase in promoter activity every 24 h following infection. There was a 15-fold increase in OsRGLP2 promoter activity after 72 h of F. solani (Mart.) Sacc. treatment and a 12-fold increase observed with A. solani Sorauer. Our results confirmed that the OsRGLP2 promoter activity was enhanced under fungal stress. Furthermore, a hyperaccumulation of H2O2 in transgenic plants is a clear signal for the involvement of OsRGLP2 promoter region in the activation of specific genes in the potato genome involved in H2O2-mediated defense response. The OsRGLP2 promoter evidently harbors copies of GT-I and Dof transcription factors (AAAG) that act in response to elicitors generated in the wake of pathogen infection.


Assuntos
Resistência à Doença/genética , Glicoproteínas/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas , Solanum tuberosum/genética , Alternaria/patogenicidade , Fusarium/patogenicidade , Oryza/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/microbiologia , Solanum tuberosum/imunologia , Solanum tuberosum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...